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Parity-Violating Gamma Asymmetry in n+p->d+γ

• n+p->d+γ experiment measures parity-violating
gamma asymmetry Aγ in capture of polarized cold
neutrons by para-H2.

• Expected asymmetry Aγ ≤  5 x 10-8

• Goal experimental error is 0.5 x 10-8

• Aγ ≈ - 0.045H1
π

• A clean measurement of Hπ
1;  2-body system - no

nuclear structure uncertainty
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    The experimental error of 0.5 x 10-8  is a
challenge for the polarized cold neutron flux
from a spallation source as well as for the
control of systematic errors.
– To reach the statistics we need about 4x1017 neutrons.
– Use of time-of-flight allows design of an experiment

with systematic errors less than 0.5 x 10-8.

The n+p->d+γ Experiment is Designed for
Pulsed Cold Neutrons



NPDGamma Experiment

dω/dΩ=1/4π(1+Aγ cos(Θsn.kγ
))

B0=10 gauss



n+p->d+γ Experiment
on BL14B at SNS

• SNS is 1.44-MW spallation source with rep. rate
of 60 Hz.

• As a comparison, the LANSCE source is 0.16
MW with rep. rate of 20 Hz

• BL14B at SNS will have a neutron guide with
• Cross section of 10cm x 12cm
• Length of 15m
• Reflectivity of Θc=3.5
• 2-degree - R=114 m bender. Fast neutrons (E>80

meV) and γ’s from the source are filtered -> small
backgrounds and light radiological shielding.

• Additional assumptions for n+p->d+γ:
– Frame definition chopper at 10 m
– Experiment at 19 m





Frame Issue:  60 Hz vs 30 Hz
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Frame Issue:  60 Hz vs 30 Hz
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Frame Issue:
Number of neutrons in 60-, 30- and 20-Hz frames
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n+p->d+γ with 30-Hz Frame
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30-Hz Frame; frame overlaps
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Neutron Beam Monitors

• Commercial fission chambers
• Thickness - 1% beam attenuation at 4meV
• Accuracy - 1% flux measurement
• Diagnostics

– With two chambers polarization
measurement via transmission

– Measurement of ortho-para ratio in the
target.

guide polarizer flipper
para H2
tgt

beam monitors



Neutrons Polarized by Optically-Polarized 3He Spin Filter

3He neutron spin filter:
• In a 3He cell Rb atoms are polarized

by laser light. Through spin exchange
3He gas is nuclear polarized.

• Cross section of the n-3He singlet
state is much larger than the triplet
state.

• Therefore, neutrons with spin
antiparallel with 3He spins are
absorbed and neutrons with spin
parallel with 3He spins are transmitted
-> neutron spin filter
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3He Spin Filter Set Up

• Large area, 12 cm in dia, 3He cells are
required to cover the beam.

• Along the beam about 10”-12” space for 3He
spin filter is required.

• 3He spin filter allows a compact
experimental setup.

• 3He spin filter offers an extra spin flip
without a field change.

NPDGamma NIST collaborators have
fabricated 12-cm in diameter cells.
The best cell has T1> 500 hr. 3He
polarization 50% has been measured.

Class 4 laser - Plight≈100 W



RF Spin Flipper

• RF spin flipper is the main control of systematic
errors.

• External field B0 = 10 gauss.
• Magnetic gradients < 1 mgauss/cm  -  no Stern-

Gerlach steering.
• Spin reversal with a RF spin flipper.

– En is proportional to 1/(tof)2

– In NMR at resonance Θ=γΒ1∆t
– To precess a neutron spin by π 
                B1= (L/γd)(1/tof)
– Spin-flip efficiency > 95% on axis at the

energy range of interest.
• Neutron spin flip possible at 30Hz.



RF Spin Flipper; spin flip efficiency

Direction of B0 has to be known in 5mrad



20-liter Liquid Para-Hydrogen Target

• To maintain neutron spin the para
hydrogen target is required.

• The 30cm in diameter and 30 cm
long target captures 60% of incident
neutrons.

• It has to provide neutron shield for
the γ-detectors.

• At 17K only 0.03% of LH2 is in
ortho state -> 1% of incident
neutrons will be depolarized.

• Target materials selection so that
false asymmetries < 10-10.

ortho

para

capture

Neutron mean free paths at 4 meV for
- n-p ortho λ≈2cm,
- n-p para λ≈20cm
- n-p capture λ≈50cm.



Safe 20-liter Liquid Para-Hydrogen Target

Hydrogen safety !!!!

Target under construction at IU by M. Snow



CsI(Tl) Gamma Detector

• Interaction length of 2.2-MeV
γ-ray in CsI is λ≈5cm.

• 48 CsI detectors - 15x15x15cm3.
Total of 0.7 metric ton of CsI.

• 95% of 2.2-MeV γ-rays will be
stopped.

• Solid angle coverage of the
detector ≈ 3π.

Detector under construction at IU by M. Snow, contributions
from Manitoba, KEK, LANL



CsI(Tl) Gamma Detector



Light detection with vacuum photodiodes

• We will have about 1x1011n/s -> current
mode detection.

• Hammamatsu  3” vacuum photodiodes 
– Linearity < 10-4

– Magnetic field sensitivity <10-4

• More than 200pe/γ MeV
• We have developed low-noise high-gain

preamplifiers.
• Preamp noise < counting statistics/100.



n+p->d+γ Experiment Layout



n+p->d+γ Experiment Layout



Estimation for Run Time on BL14B

• Integrated flux with 30 Hz  is 8x1010 n/s for
      tof = 10 - 28 ms.
• 3He transmission, attenuation by matter on beam, LH2

capture efficiency, detector solid angle,….
                         gamma rate = 6.5x109 γ/s.
• Run time required for the statistical error of 0.5x10-8 is
                          6153846 s ≈ 70 days.



Systematic Errors

• Full discussion of systematic errors can be found on
http://p23.lanl.gov/len/npdg/.

• Systematic errors are at least one order of magnitude smaller than
0.5x10-8.

• Most of systematic errors correlated with neutron spin have tof
dependence.

• SNS FP14B does not introduce any new sources of systematic
errors.



Conclusions

• Pulsed polarized cold neutrons are the best way to do the
precision n+p->d+γ experiment
– Experiment can be designed for pulsed cold neutrons.
– In situ control of systematic errors by tof information

• At SNS gamma rates at 30Hz 3-4 times larger than rates at
LANSCE FP12 (20Hz).

• At SNS the n+p->d+γ experiment can reach the statistical
error of 0.5x10-8 in 3 months running.

• The experiment requires a frame definition chopper that
handles the frame overlap problem.


